Simulations show how to turn graphene's defects into assets

Oct. 19, 2016

UNIVERSITY PARK, Pa. -- Researchers at Penn State, the Department of Energy's Oak Ridge National Laboratory and Lockheed Martin Space Systems Company have developed methods to control defects in two-dimensional materials, such as graphene, that may lead to improved membranes for water desalination, energy storage, sensing or advanced protective coatings.

For a two-dimensional, one-atom-thick material like graphene, defects such as small cracks or holes can make a big difference in performance. Usually, these defects are considered undesirable. But if the defects can be controlled, they can be used to engineer new, desirable properties into the material.

"As long as you can control defects, you might be able to synthesize into graphene whatever kinds of response the material will give you," said Adri van Duin, Kenneth Kuan-Yo Kuo Early Career Professor and professor of mechanical engineering and chemical engineering, Penn State and corresponding author on a recent paper in ACS Nano. "But that does require that you have very good control over defect structure and defect behavior. What we have done here is a pretty strong step towards that."

van Duin is the co-inventor and main developer of a mathematical modeling and simulation technique called the Reactive Force Field Method (ReaxFF), which is capable of predicting the interactions of thousands of atoms when they are perturbed by an external force, in this case the bombardment of graphene by noble gas atoms.

Noble gases -- helium, neon, argon, krypton and xenon-- are frequently used to create defects in graphene to enhance its properties. By knocking one or more carbon atoms out of graphene's chicken wire-shaped structure, the resulting hole can be filled by atoms of another material or by specific molecules in a process called doping. Doping can change the chemical or electrical properties of the graphene to, for example, allow water molecules to flow through a membrane while rejecting salt particles.

"We have done a series of atomistic scale simulations where we accelerate noble gas ions into the graphene," said van Duin who is also director, Materials Computation Center, part of the user facility of Penn State's Materials Research Institute. "The simulations gave much the same defect patterns as experiments. That means our simulations can tell experimentalists what dose of atoms at which acceleration they need to get those types of defects."

Because defects can morph into different shapes or move around in the seconds after creation, his group also simulates putting the graphene in an oven and annealing -- heating at high temperature -- to stabilize the structure.

It is unusual for an atomistic simulation to correspond to the same size, time and exposure range as an experiment due to the computational expense of doing interactions among thousands of atoms over the time scale required to stabilize a material, van Duin said. ReaxFF, developed by van Duin and Caltech's William A. Goddard, is able to model chemical and physical interactions in molecules and materials as bonds between atoms form and break.

"This study provides insight into the atomistic scale details of graphene irradiation and is a preliminary step in designing functionalized carbon materials in two dimensions," said Kichul Yoon, the paper's lead author and a graduate student in van Duin's group.

van Duin adds, "Clearly there is nothing that makes this exclusive to graphene. Any 2D material can be treated with the same simulations. Anyone who wants to dope a 2D material or understand defects will be interested in these simulations."

The researchers intend to continue working with Lockheed Martin on aerospace applications and will also pursue the goal of graphene-based water desalination. Jacob Swett of Lockheed Martin prepared the samples used in experiments and was crucial in moving the project forward.

To correlate simulations with experiments, the researchers relied upon the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility at ORNL, to create defects using ion bombardment and subsequently characterizing those defects using atomic-resolution imaging.

"At CNMS, we have state-of-the-art Helium and Neon ion beam and aberration-corrected scanning transmission electron microscopy instruments that permit atomistic scale characterization," said Raymond Unocic, an R&D staff scientist at ORNL.

Other contributors to the paper, "Atomistic-Scale Simulations of Defect Formation in Graphene Under Noble Gas Ion Irradiation," were Ali Rahnamoun, a Ph.D. student in van Duin's group, and Vighter Iberi, David Cullen, Stephen Jesse, Ivan Vlassiouk, Alex Belianinov, Xiahan Sang, Olga Ovchinnikova, and Adam Rondinone, all at ORNL, who contributed to the experimental modification and characterization of graphene.

The Fluid Interface Reactions, Structures and Transport Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy supported this work. 

 

Share this story:

facebook linked in twitter email

MEDIA CONTACT:

Walt Mills

wem12@psu.edu

814-865-0285

 
 

About

The Department of Mechanical and Nuclear Engineering at Penn State is one of the nation’s largest and most successful engineering departments. We serve more than 1,000 undergraduate students and more than 330 graduate students

We offer B.S. degrees in mechanical engineering and nuclear engineering as well as resident (M.S., Ph.D.) and online (M.S., M.Eng.) graduate degrees in nuclear engineering and mechanical engineering. MNE's strength is in offering hands-on experience in highly relevant research areas, such as energy, homeland security, biomedical devices, and transportation systems.

Department of Mechanical and Nuclear Engineering

137 Reber Building

The Pennsylvania State University

University Park, PA 16802-4400

Phone: 814-865-2519